L = lim n → ∞ ( n 1) n!
2^n/n factorial convergence- A power series about a, or just power series, is any series that can be written in the form, ∞ ∑ n=0cn(x −a)n ∑ n = 0 ∞ c n ( x − a) n where a a and cn c n are numbers The cn c n 's are often called the coefficients of the series The first thing to notice about a power series is that it is a function of x xAnswer (1 of 4) Let A_n = \frac{(n!)^2}{(2n)!} Apply the ratio test, also known as the Cauchy ratio or D'Alembert ratio test We calculate \begin{align*}\lim_{n\to
2^n/n factorial convergenceのギャラリー
各画像をクリックすると、ダウンロードまたは拡大表示できます
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
0 件のコメント:
コメントを投稿